
CSS3: Selectors, Typography,

and Color Modes
In Chapter 1, Getting Started with HTML5, CSS3, and Responsive Web Design, we
noted that the number of people viewing websites over mobile telecom networks
is ever increasing. As current telecom network speeds vary enormously, we need
to consider the bandwidth and therefore load time of the websites we build. Back
in the day we had to consider how long our pages and the images and media they
contained would take to load over a 56K modem. Now, we face similar loading time
challenges. Just as the percentage rules of table-based layouts are re-emerging, so
is the need to re-examine every piece of media and bandwidth sapping content we
add to our pages. Although our devices are now mobile, the speeds they download
content and the premium they face for doing so (speed and cost) is comparable to
years gone by. Everything old is new again! Thankfully, CSS3 can heavily reduce
our reliance on images for visual lair giving us the tools to create beautiful sites
that also download in record time. There's lots of CSS3 for us to cover. Chapter 6,
Stunning Aesthetics with CSS3, will deal with more speciic CSS3 techniques including
text shadows, box shadows, gradients, and backgrounds whilst Chapter 7, CSS3
Transitions, Transformations, and Animations, will look at CSS3 animations,
transforms, and transitions.

In this chapter, we will learn the following CSS3 fundamental:

•	 What CSS3 offers the frontend developer
•	 Quick and handy CSS3 tricks (multiple columns and word wraps)

•	 The anatomy of a CSS rule

•	 What vendor-speciic preixes are and how to use them
•	 New CSS3 selectors and how they work

•	 Custom typography with @font-face

•	 How to use RGB and HSL color modes with Alpha tranparency

CSS3: Selectors, Typography, and Color Modes

[138]

What CSS3 offers the frontend developer
In the past, we either gambled that users would put up with long load times for
the sake of a great design (they wouldn't, by the way!) or we ditched images, often
compromising our design ideals, for the sake of usability. CSS3, in many ways
negates the need for compromise. With just a few lines of code (and no images!) CSS3
can produce onscreen elements such as rounded corners, background gradients,
text shadows, box shadows, custom typography, and multiple background images
(alright, granted, that one does require images). If that wasn't enough, much of
the basic interaction for which we have previously relied on JavaScript, such as
hover state animations, can also be handled with pure CSS3. There are heaps of
CSS3 goodies and economies that will elevate our responsive design from merely
"a normal website made responsive" to a responsive website built for the future.
By utilizing CSS3, we will enable our responsive design to load faster, require less
resource and be far easier to maintain and amend in the future. Before we get into
that, let's deal with the "Elephant in the room".

CSS3 support in Internet Explorer
versions 6 to 8
With a few exceptions (such as @font-face), few features of the new CSS3 modules
are supported by Old IE (Internet Explorer versions 6, 7, and 8). Should you use CSS3
in your design? As ever in web development, the answer is "it depends".

Personally, at present, I principally use CSS3 to enhance a site, rather than provide
essential functionality. I'm entirely comfortable with elements looking a little different
in different browsers. I believe you and your clients should be too. You might ind
it helpful to refer back to the Educating our clients that websites shouldn't look the same
in all browsers section in Chapter 1, Getting Started with HTML5, CSS3, and Responsive
Web Design. Which parts of a design are critical to it "working" or "looking right" is
subjective. But it's worth knowing that there are many polyills available for adding
CSS3 functionality to Old IE. Applying such polyills, should you choose to follow that
path, is discussed more in Chapter 9, Solving Cross-browser Responsive Challenges.

For a full list of what CSS 2.1 and CSS3 features are supported in the
differing versions of Internet Explorer, head over to the following URL:

http://msdn.microsoft.com/en-us/library/
cc351024%28v=vs.85%29.aspx

Chapter 5

[139]

Using CSS3 to design and develop pages in
the browser
I can't speak for you but I ind re-making images tiresome. You know the kind of
comment I'm talking about, "Could we make those corners a little rounder?" or "Can
the gradient be a little darker at the top?" Once we've dutifully made the amends,
we often hear the inevitable, "Oh, no, it was better the way it was. Can you swap it
back?" Now, of course, this to-and-fro process is necessary; after all, we often want
to tweak a design just to see how it looks. However, CSS3 lets you do much of this in
mere seconds, within the code, rather than minutes within the graphics editor.

Anatomy of a CSS rule
Before exploring some of what CSS3 has to offer, to prevent confusion, let's establish
the terminology we use to describe a CSS rule. Consider the following example:

.round {

 border-radius: 10px;

}

This rule is made up of the selector (.round) and then the declaration
(border-radius: 10px;). However, the declaration is further deined by
the property (border-radius:) and the value (10px;). Happy, we're on the
same page? Great, let's press on.

Vendor preixes and how to use them
As the CSS3 Modules speciications have yet to be either ratiied by the W3C or have
all their proposed features fully implemented into browsers, browser vendors use
what's known as vendor preixes to test new "experimental" CSS features. Whilst
this helps browser makers implement the new CSS3 modules, it makes our lives, as
writers of CSS3, just a little more tedious. Consider the following code for a rounded
corner in CSS3:

.round{

 -khtml-border-radius: 10px; /* Konqueror */

 -rim-border-radius: 10px; /* RIM */

 -ms-border-radius: 10px; /* Microsoft */

 -o-border-radius: 10px; /* Opera */

 -moz-border-radius: 10px; /* Mozilla (e.g Firefox) */

 -webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */

 border-radius: 10px; /* W3C */

}

CSS3: Selectors, Typography, and Color Modes

[138]

You can see a number of vendor preixed properties (and that is by no means an
exhaustive list), each with their own unique preix, for example, -webkit- for
Webkit based browsers, -ms- is the Microsoft preix, so covers the Internet Explorer,
and so on. Due to the way CSS works, a browser will go line by line down the
stylesheet, applying properties that apply to it and ignoring ones that don't.

Furthermore, applicable properties later in the stylesheet take precedence over
earlier ones. Thanks to this cascade, we can list our vendor-preixed properties irst
and then the correct (but perhaps yet to be implemented) non-preix version last, safe
in the knowledge that when the feature is fully implemented, the correct version will
be implemented by the browser, rather than the experimental, browser-speciic one
listed before it.

Clippings and JavaScript for quick CSS3 preixes
You may ind it handy to keep clippings of common CSS3 rules
containing all the necessary vendor preixed properties. That way you
can just paste them in without needing rewrite them all each time. Many

code-editing programs (or Integrated Development Environments

(IDEs) as they are often labeled) have code clip features and when using
CSS3 they can save a lot of time. There's also JavaScript solutions that
automatically add preixes to CSS iles, check out "-preix-free", a great
solution, at http://leaverou.github.com/prefixfree/.

It's acceptable to list every vendor preix version of a property. However, in reality,
few people do. Instead they either target the browsers they expect to see most often
or check what browsers support the feature before writing the rule. For example, you
might just opt to go with:

.round{

 -moz-border-radius: 10px; /* Mozilla (e.g Firefox) */

 -webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */

 border-radius: 10px; /* W3C */

}

That would cover Firefox, Chrome, and Safari, along with any browser that has fully
implemented the rule.

I know what you're thinking, isn't listing multiple vendor preixed versions of the
same property going to lead to code bloat? Well, a little yes. But no matter how many
preixed properties we add, it's still a faster, more elegant and robust solution than
using images.

Chapter 5

[141]

Before working on a site, it's wise to look at the current browser usage statistics.
In doing so, you'll have a better idea of what browsers you need to build speciic
support for. For example, if time and budget are tight, you might decide to omit
vendor speciic preixes for any browser with less than 3 percent usage rate for
your site. As ever, you need to make a judgment based on a number of variables.

Now, we understand what the preixes are and how to apply them in our rules.
Let's look at some quick and useful little CSS3 tricks.

When can I use speciic CSS3 and HTML5 features?

As we delve into CSS3 more and more, I can heartily recommend visiting
http://caniuse.com, if you ever want to know what the current level
of browser support is available for a particular CSS3 or HTML5 feature.
Alongside showing browser version support (searchable by feature) it
also provides the most recent set of global usage statistics from
http://gs.statcounter.com.

http://caniuse.com
http://caniuse.com
http://gs.statcounter.com
http://gs.statcounter.com

CSS3: Selectors, Typography, and Color Modes

[138]

Quick and useful CSS3 tricks
In my day-to-day work, some of the new CSS3 features I use constantly and others
I've never needed. Before getting into the heavier stuff, I thought it might be useful to
share a couple of CSS3 goodies that make life easier, especially in responsive designs,
by accomplishing simple tasks that used to be minor headaches.

CSS3 multiple columns for responsive
designs
Ever needed to make a single piece of text appear in multiple columns? Until CSS3,
you'd need to separate the content into different markup elements and then style
accordingly. Altering markup for stylistic purposes is never a good practice. CSS3
allows us to span one or more pieces of content across multiple columns. Consider
the following markup:

<div id="main" role="main">

 <p>lloremipsimLoremipsum dolor sit amet, consectetur

// LOTS MORE TEXT //

</p>

 <p>lloremipsimLoremipsum dolor sit amet, consectetur

// LOTS MORE TEXT //

</p>

</div>

You can make all that content low across multiple columns that are either: a certain
column width (for example, 12em) or certain number of columns (for example, 3).
Here's how:

For a certain width of column, use the following syntax (note that vendor preixes
have been omitted for brevity):

#main {

 column-width: 12em;

}

This will mean, no matter the viewport size, the content will span across columns
that are 12 em in width. Altering the viewport will adjust the number of columns
displayed dynamically.

Chapter 5

[143]

For example, here it is in Safari with a 1024 px wide viewport:

And the following screenshot shows how the same page renders on an iPad with a
768 px wide viewport:

CSS3: Selectors, Typography, and Color Modes

[138]

A beautifully responsive layout requiring the minimum of work—I like it!

If you'd rather keep a ixed number of columns and vary the width, you can write a
rule like the following:

#main {

 column-count: 4;

}

Adding a gap and column divider
We can take things even further by adding a speciied gap for the columns and a
divider:

#main {

 column-gap: 2em;

 column-rule: thin dotted #999;

 column-width: 12em;

}

This gives us a result like the following:

Chapter 5

[145]

To read the speciication on the CSS3 Multi-column Layout Module, visit
http://www.w3.org/TR/css3-multicol/.

For the time being, remember you'll need to use vendor preixes on the column
declarations for maximum compatibility.

Word wrapping
How many times have you had to add a big URL into a tiny space and, well,
despaired? Take a look at the problem in the following screenshot; notice the URL at
the bottom right breaking out of its allocated space:

CSS3 ixes this problem with a simple declaration, which as chance would have it,
also works in older versions of Internet Explorer as far back as 5.5!

word-wrap: break-word;

CSS3: Selectors, Typography, and Color Modes

[138]

Adding this to the containing element gives an effect as shown in the following
screenshot. Hey presto, the long URL now wraps perfectly!

New CSS3 selectors and how to use them
CSS3 gives incredible power for selecting elements within a page. You may not think
this sounds very glitzy but trust me, it will make your life easier and you'll love CSS3
for it! I'd better qualify that bold claim…

CSS3 attribute selectors
You've perhaps used existing CSS attribute selectors to target rules. For example,
consider the following rule:

img[alt] {
 border: 3px dashed #e15f5f;
}

This would target any image tags in the markup which have an alt attribute:

Chapter 5

[147]

You can also narrow things down by specifying what the attribute value is. For
example, consider the following rule:

img[alt="atwi_oscar"] {

 border: 3px dashed #e15f5f;

}

This would only target images which have an alt attribute of atwi_oscar. So far, so
big deal we could do that in CSS2. What is CSS3 bringing to the party? Principally,
three new "substring matching" attribute selectors…

CSS3 substring matching attribute selectors
CSS3 lets us select elements based upon the substring of their attribute selector. That
sounds complicated. It isn't! We can now select an element, based on the contents of
the attribute. The three options are whether the attribute is:

•	 Beginning with the preix
•	 Contains an instance of

•	 Ends with the sufix

Let's see what they look like.

The "beginning with" substring matching attribute selector
The "beginning with" substring matching attribute selector has the following syntax:

Element[attribute^="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
began with film, I would write the following rule:

img[alt^="film"] {

 border: 3px dashed #e15f5f;

}

The key character in all this is the ^ symbol which means "begins with".

The "contains an instance of" substring matching attribute
selector
The "contains an instance of" substring matching attribute selector has the
following syntax:

Element[attribute*="value"]

CSS3: Selectors, Typography, and Color Modes

[138]

In practical use, if I want to select all images on the site that had an alt attribute that
contained film I would write the following rule:

img[alt*="film"] {
 border: 3px dashed #e15f5f;
}

The key character in all this is the * symbol which means "contains".

The "ends with" substring matching attribute selector
The " ends with " substring matching attribute selector has the following syntax:

Element[attribute$="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
ended with film I would write the following rule:

img[alt$="film"] {
 border: 3px dashed #e15f5f;
}

The key character in all this is the $ symbol which means "ends with".

A practical, real world example
How can these substring attribute selectors actually help? Let me give you an
example where I often use CSS3 attribute selectors. If I build a website with a
Content Management System (for example, Wordpress, Concrete, or Magento), it
often gives the client the ability to add new pages. For example, perhaps they are
adding a piece of news about their company or a product update. Each time they add
a page in the CMS, the generated HTML will include an ID value for the <body> or
other relevant tag, which helps distinguish the page, markup wise, from others. For
example, one client was involved in Motorsport and had a "Racing History" section
with yearly reports. Each <body> tag would have an ID for the year:

<body id="2003">

IDs can start with numbers in HTML5

If you're not used to coding in HTML5, you might assume that an ID
beginning with a number is invalid, as it was in HTML 4.01. However,
HTML5 removes that restriction, the only things to remember with ID
names in HTML5 is that there should be no spaces in the ID name and it
must be unique on the page. For more information visit http://dev.
w3.org/html5/spec/Overview.html#the-id-attribute.

Chapter 5

[149]

I needed the navigation bar link for "Racing History" to be highlighted when any
of these yearly pages were viewed, as they related to the "Racing History" section.
However, rather than write a style rule covering every future year, I was able to
write a defensive (they are sometimes referred to as "defensive" rules as they try
and safeguard against future events) CSS3 rule:

body[id^="2"] .navHistory { color: #00b4ff; }

This means that any element with a class of .navHistory, that is a descendant of
a body with an ID beginning with 2 (for example, 2002, 2003, 2004, and on) will be
colored with the hex value of #00b4ff. One simple rule covers all eventualities.
Unless of course the website is still in its current form by the year 3000—in which case,
chances are, even if I eat and exercise well, I won't be able to continue its upkeep…

CSS3 structural pseudo-classes
The more often you code websites, the more often it's likely you'll need to solve
the same problem again and again. Let's consider a typical example. Horizontal
navigation bars are often made up of a number of equally spaced links.
Suppose we need margin to the left and right side of each list item, except for the irst
and last list item. Historically, we have been able to solve this problem by adding a
semantically superluous classname to the irst and last elements in the list, as
shown in the highlighted lines in the following code snippet:

 <li class="first">Why?
 Synopsis
 Stills/Photos
 Videos/clips
 Quotes
 <li class="last">Quiz

And then by adding a couple of rules in the CSS, we can amend the margin for those
two list items:

li {
 margin-left: 5%;
 margin-right: 5%;
}
.first {
 margin-left: 0px;
}
.last {
 margin-right: 0px;
}

CSS3: Selectors, Typography, and Color Modes

[138]

This works but isn't lexible. For example, when building a website built on a CMS
system, list items for linking new content might be added automatically, so it might
not be a simple task to add or remove the last or first class to the correct list item
in the markup.

The :last-child selector
CSS2.1 already had a selector applicable for the irst item in a list:

li:first-child

However, CSS3 adds a selector that can also match the last:

li:last-child

Using these selectors together, we don't need any additional classes in our markup.

We'll ix up our And the winner isn't... site navigation using this and a combination
of the display: table property. The following screenshot shows how things
look currently:

Chapter 5

[151]

Now, let's take a look at the graphic mockup:

The navigation bar links span the full width of the design, which we need to
replicate. Our markup for the navigation looks like this:

<nav role="navigation">

 Why?

 Synopsis

 Stills/Photos

 Videos/clips

 Quotes

 Quiz

</nav>

CSS3: Selectors, Typography, and Color Modes

[138]

First, we'll set the nav element to be a table:

nav {

 display: table;

 /* more code... */

}

Then the to be displayed as a table-row:

nav ul {

 display: table-row;

 /* more code... */

}

And inally the list-items to display as table-cells:

nav ul li {

 display: table-cell;

 /* more code... */

}

This means that if extra list items are added, they will automatically space
themselves accordingly. Finally, we'll use our CSS selectors to align the text to the
right and left of the irst and last list items:

nav ul li:last-child {

 text-align: right;

}

nav ul li:first-child {

 text-align: left;

}

Chapter 5

[153]

Then in the browser, our navigation is approaching our original composite:

Don't worry; these tables are only for display!

You may be wondering what on earth I'm thinking of, to suggest that
we use a table for the navigational layout. However, don't forget, these
tables are only presentational. That means they exist only in the CSS and
are nothing to do with the markup. We are merely telling the browser
we want those elements to appear and behave as if they were a table, not
actually be a table. Displaying the markup in this manner also doesn't
preclude us from using a different layout type for a different viewport, for
example, display: inline-block for viewports below 768 px.

CSS3: Selectors, Typography, and Color Modes

[138]

The nth-child selectors
But what about those alternate colors shown in the navigation bar links of the
original composite? Again, CSS3 has a selector that can solve this problem for us
without the need for additional markup:

:nth-child(even)

Let's use this selector to ix the problem and then we can look at some of the many
ways that nth-child can solve problems that previously required extra markup. I'll
add alternate red links in the navigation bar by adding the following style rule:

nav ul li:nth-child(even) a {
 color: #fe0208;
}

And now we have alternate colors in the navigation links:

How about that? Not a line of jQuery in site and no extra markup! What did I tell
you? CSS3 selectors are great!

Chapter 5

[155]

Understanding what nth rules do
Amongst frontend web developers and designers, nothing makes mathematics
weaklings tremble quite like the nth-based rules (well, you know, except maybe
someone asking you to code a little PHP or give them a hand with some REGEX
expressions). Let's see if we can make sense of the beast and gain a little respect from
those backend wizards.

When it comes to selecting elements in the tree structure of the DOM (Document
Object Model or more simplistically, the elements in a page's markup) CSS3 gives
us incredible lexibility with a few nth-based rules—:nth-child(n), :nth-last-
child(n), :nth-of-type(n), and :nth-last-of-type(n). We've seen that we can
use (odd) or (even) values (as we have to ix our navigation above) but the (n)
parameter can be used in another couple of ways:

•	 Used as an integer; for example, :nth-child(2)—would select the
second item

•	 Used as a numeric expression; for example, :nth-child(3n+1)—would start
at 1 and then select every third element

The integer based property is easy enough to understand, just enter the element
number you want to select. The numeric expression version of the selector is the part
that can be a little bafling for mere mortals. Let's break it down. For practicality,
within the brackets, I start from the right. So, for example, if I want to igure out
what (2n+3) will select, I start at the right (from the third item) and know it will
select every second element from that point on. I've amended our navigation rule to
illustrate this:

nav ul li:nth-child(2n+3) a {

 color: #fe0208;

}

As you can see, the third list item is colored and then every subsequent second one
after that (if there were 100 list items, it would continue selecting every second
list item):

CSS3: Selectors, Typography, and Color Modes

[138]

How about selecting everything from the second item onwards? Well, although you
could write :nth-child(1n+2), you don't actually need the irst number 1 as unless
otherwise stated, n is equal to 1. We can therefore just write :nth-child(n+2).
Likewise, if we wanted to select every third element, rather than write :nth-
child(3n+3), we can just write :nth-child(3n) as every third item would
begin at the third item anyway, without needing to explicitly state it.

The expression can also use negative numbers for example, :nth-child(3n-2)
starts at minus 2 and then selects every third item. Here's our navigation amended
with the following rule:

nav ul li:nth-child(3n-2) a {

 color: #fe0208;

}

And here's what it gives us in the browser:

Hopefully, that's making perfect sense now?

The child and last-child differ in that the last-child variant works from the
opposite end of the document tree. For example, :nth-last-child(-n+3) starts at
3 from the end and then selects all the items after it. Here's what that rule gives us in
the browser:

Chapter 5

[157]

Finally, let's consider :nth-last-of-type. Whilst the previous examples count any
children regardless of type, :nth-last-of-type let's you be speciic about the type
of item you want to select. Consider the following markup:

 <li class="internal">Why?

 Synopsis

 <li class="internal">Stills/Photos

 <li class="internal">Videos/clips

 <li class="internal">Quotes

 <li class="internal">Quiz

Note that the second list item doesn't have the internal class added to it.

Consider the following rule:

nav ul li.internal:nth-of-type(n+2) a {

 color: #fe0208;

}

CSS3: Selectors, Typography, and Color Modes

[138]

You can see that we are telling the CSS, "From the second matching item, target
every item with a class called internal. And here's what we see in
the browser:

CSS3 doesn't count like jQuery!

If you're used to using jQuery you'll know that it counts from 0 upwards.
For example, if selecting an element in jQuery, an integer value of 1
would actually be the second element. CSS3 however, starts at 1 so that a
value of 1 is the irst item it matches.

The negation (:not) selector
Another handy selector is the negation pseudo-class selector. This is used to select
everything that isn't something else. For example, keeping the same markup as the
previous example, if we change our rule as follows:

nav ul li:not(.internal) a {

 color: #fe0208;

}

You can see that we are opting to select every list item that doesn't have the
internal class . So in the browser, we see this:

Chapter 5

[159]

So far we have looked primarily at what's known as structural pseudo-
classes (full information on this is available at http://www.w3.org/TR/
selectors/#structural-pseudos). However, CSS3 has many more selectors. If
you're working on a web application, it's worth looking at the full list of UI element
states pseudo-classes (http://www.w3.org/TR/selectors/#UIstates), as they can;
for example, help you target rules based on whether something is selected or not.

Amendments to pseudo-elements
Pseudo-elements have been around since CSS2 but the CSS3 speciication revises
the syntax of their use very slightly. To refresh your memory, until now, p:first-
line would target the irst line in a <p> tag. Or p:first-letter would target the
irst letter. Well, CSS3 asks us to separate these pseudo-elements with a double colon
to differentiate them from pseudo-classes. Therefore, we should write p::first-
letter instead. Note that however Internet Explorer 8 and lower versions don't
understand the double colon syntax; they understand only the single colon syntax.

Is :irst-line handy for responsive designs?
One thing that you may ind particularly handy about the :first-line
pseudo-element is that it is speciic to the viewport. For example, if we write
the following rule:

p::first-line {

 color: #ff0cff;

}

http://www.w3.org/TR/selectors/#UIstates

CSS3: Selectors, Typography, and Color Modes

[138]

As you might expect, the irst line is rendered in an awful shade of pink (I was
thinking of Moulin Rouge at the time):

However, on a different viewport, it renders a different selection of text:

>

Chapter 5

[161]

So, without needing to alter the markup, with a responsive design, there's a handy
way of having the irst visual (as the browser renders it, not as it appears in the
markup) line of text appear differently than the others.

Hopefully this brief foray into CSS3 selectors illustrates how they help keep a
responsive design and code base free of additional markup. It the past, I've needed
to use a JavaScript library such as jQuery to make complicated selections but CSS3
often negates that need. It's also comforting to know that the CSS3 selectors module
is already at the W3C Recommendation status; so it's a very mature module that's
unlikely to change much from here on.

Custom web typography
For years we've made do with a boring selection of web safe fonts. When some
fancy typography was essential for a design, we've typically substituted a graphical
element for it and used a text-indent rule to shift the actual text from the viewport.

There have been a few further options for adding fancy typography to a page. sIFR
(http://www.mikeindustries.com/blog/sifr/) and Cufón (http://cufon.
shoqolate.com/generate/) used Flash and JavaScript respectively to re-make text
elements appear as the fonts they were intended to be. However, with a responsive
design, we want a lean, mean, content-serving machine, and images and code lab
should be avoided where possible. Thankfully, CSS provides a means of custom web
typography that is now ready for the big time.

The @font-face CSS rule
The @font-face CSS rule has been around since CSS2 (but subsequently absent in
CSS 2.1). It was even supported partially by Internet Explorer 4 (no, really)! So what's
it doing here, when we're supposed to be talking about CSS3?

Well, as it turns out, @font-face has been re-introduced for the CSS3 Fonts module
(http://www.w3.org/TR/css3-fonts). Due to the historic legal quagmire of using
fonts on the web, it's only recently started to gain serious traction as the de facto
solution for web typography. There's also the issue of the varying font formats and
implementations from different vendors. For example, the Embedded OpenType
(EOT) font was Internet Explorer's (and not anyone else's) preferred choice of font
format. Others favor the more common place TrueType (TTF), whilst there is also
Scalable Vector Graphics (SVG) and Web Open Font Format (WOFF). When it
comes to using @font-face for your web typography, there is both good news and
bad. First the bad…

http://www.w3.org/TR/css3-fonts
http://www.w3.org/TR/css3-fonts

CSS3: Selectors, Typography, and Color Modes

[138]

Until a single universal format wins out, it's necessary to serve multiple versions
of the same font to cover the different browser implementations. Much as there are
competing video formats, we also need a single font format for the web to emerge
victorious before dropping support for the others.

However, the good news is that adding custom fonts for every browser is now easy.
Let's do it!

Implementing web fonts with @font-face
Let's get the And the winner isn't... site typography licked into shape with the @font-
face CSS rule.

First we need some fonts. There are now a number of great sources for web fonts;
both free and paid. My personal favorite is Font Squirrel (www.fontsquirrel.com)
although Google also offers free web fonts, ultimately served with the @font-face
rule (www.google.com/webfonts). There are also great, paid services from Typekit
(www.typekit.com) and Font Deck (www.fontdeck.com).

http://www.google.com/webfonts
http://www.typekit.com

Chapter 5

[163]

As chance would have it the fonts used in my composite are all available free from
Font Squirrel (I know, I'm a cheapskate!). They are Bebas Neue, Bitstream Vera Sans
and Collaborate Thin. Having downloaded the relevant @font-face kit for each font
from Font Squirrel a look inside the ZIP ile of each reveals the font itself in various
formats (WOFF, TTF, EOT , and SVG) plus a stylesheet.css ile containing a font
stack for the font needed. For example, the rule for Bebas Neue is as follows:

@font-face {

 font-family: 'BebasNeueRegular';

 src: url('BebasNeue-webfont.eot');

 src: url('BebasNeue-webfont.eot?#iefix') format('embedded-
opentype'),

 url('BebasNeue-webfont.woff') format('woff'),

 url('BebasNeue-webfont.ttf') format('truetype'),

 url('BebasNeue-webfont.svg#BebasNeueRegular') format('svg');

 font-weight: normal;

 font-style: normal;

}

Much like the way vendor preixes work, the browser will apply styles from that list
of properties (with the lower properties, if applicable, taking precedence) and ignore
ones it doesn't understand. That way, no matter what the browser, there should be a
font that it can use.

Now, although this block of code is great for fans of copy and paste, it's important
to pay attention to the paths the fonts are stored in. For example, I tend to copy the
fonts from the ZIP ile and store them in a folder inventively called fonts on the
same level as my css folder. Therefore, as I'm usually copying this font stack rule
into my main stylesheet, I need to amend the paths. So, my rule becomes:

@font-face {

 font-family: 'BebasNeueRegular';

 src: url('../fonts/BebasNeue-webfont.eot');

 src: url('../fonts/BebasNeue-webfont.eot?#iefix')
format('embedded-opentype'),

 url('../fonts/BebasNeue-webfont.woff') format('woff'),

 url('../fonts/BebasNeue-webfont.ttf') format('truetype'),

 url('../fonts/BebasNeue-webfont.svg#BebasNeueRegular')
format('svg');

 font-weight: normal;

 font-style: normal;

}

CSS3: Selectors, Typography, and Color Modes

[138]

It's then just a case of setting the correct font and weight (if needed) for the relevant
style rule. In this case, I want to amend the navigation links to use the new Bebas
Neue font:

nav ul li a {

 height: 42px;

 line-height: 42px;

 text-decoration: none;

 text-transform: uppercase;

 font-family: 'BebasNeueRegular';

 font-size: 1.875em; /*30 ÷ 16 */

 color: black;

}

And here is how the navigation bar now looks in the browser:

When replacing fonts you'll typically need to amend the font sizing. However,
having put the existing font size calculation in a comment to the side, it's easy to
amend accordingly. An added bonus is that, if the composite uses the same fonts
you are using in the code, you can plug the sizes in direct from the composite ile.
For example, my composite shows the "EVERY YEAR…" text as 102 px, so using the
tried and trusted target ÷ context = result technique I can convert this value to ems:

#content h1 {

 font-family: Arial, Helvetica, Verdana, sans-serif;

 text-transform: uppercase;

 font-family: 'BebasNeueRegular';

 font-size: 6.375em; /* 102 ÷ 16 */

}

Once I've amended the font-family and font-size declarations for all relevant
rules, the front page now looks like the following in Google Chrome (using the
WOFF font format):

Chapter 5

[165]

The design still isn't perfect but the typography now perfectly mirrors that of our
original composite. For comparison, here's how it's looking on the iPad 2 (which
supports TTF fonts form version iOS 4.2 onwards):

CSS3: Selectors, Typography, and Color Modes

[138]

Help—my CSS3 @font-face headings
look messy
This problem drove me to distraction when I irst started using @font-face fonts to
set my web typography free. It's not particular to responsive designs, it can happen
with any heading that has a @font-face font applied. Here's a portion of a design
composite I was working on:

When I had built the site, the relevant markup was as follows:

<div class="intro">

 <h1>We're Bridestone: providing beautiful quality
<i>natural</i> stone products.</h1>

 …more code…

</div> <!-- intro:END -->

And here was the relevant CSS:

.intro h1 {

 font-family: CaudexBold, "Times New Roman", Times, serif;

 font-size: 2.63636364em;

 line-height: 1em;

}

.intro h1 span {

 font-size: 0.545454545em;

 font-family: CaudexRegular, "Times New Roman", Times, serif;

 font-weight: normal;

}

Chapter 5

[167]

However, although I was using @font-face so that I could use exactly the same font
as the composite, the header still looked a little messy in the browser:

Hopefully you can make out that the We're Bridestone text doesn't match the
composite. It's thicker, which degrades the clarity!

It turns out that the problem relates to font weight. Unless explicitly stating the
font-weight property, many browsers will apply a standard font-weight
(typically, 700) to any heading elements. The solution therefore is to always deine
the font-weight of any @font-face fonts used in heading elements. For example, in
this instance, I amended the CSS to:

.productIntro h1 {

 font-family: CaudexBold, "Times New Roman", Times, serif;

 font-weight: 400;

 font-size: 2.63636364em;

 line-height: 1em;

}

CSS3: Selectors, Typography, and Color Modes

[138]

This then overrides the font-weight value that the browser would ordinarily use
and as shown in the following screenshot, the design inally matches the composite
in the browser:

A note about custom @font-face typography
and responsive designs
The @font-face method of web typography is, on the whole, great. The only caveats
to be aware of when using the technique with responsive designs are in relation to
the font ile size. For example, the And the winner isn't... site is using three custom
fonts—Bebas Neue, Bitstream Vera Sans, and Collaborate Thin. At worst, if the
device rendering the page required the SVG font format, it will require an extra 70
KB of data, compared with using the standard web safe fonts such as Arial. These
fonts are also fairly lightweight—others are not! Be sure to check the size of custom
fonts if you want the best site performance.

A truly responsive type unit on the way?

Amongst the current working draft of the CSS3 Fonts module is
reference to viewport relative fonts (http://www.w3.org/TR/

css3-values/#viewport-relative-lengths). The vw unit (for

viewport width), vh unit (for viewport height) and vm unit (for viewport
minimum; equal to the smaller of either vm or vh) could be crucial time
savers in the years to come. Sadly, at present there is no browser support
apart from Internet Explorer 9.

http://www.w3.org/TR/css3-values/#viewport-relative-lengths
http://www.w3.org/TR/css3-values/#viewport-relative-lengths

Chapter 5

[169]

New CSS3 color formats and alpha
transparency
So far, CSS3 has given us new powers of selection and the ability to add custom
typography to our designs. Now, we'll look at ways that CSS3 allows us to work
with color that were simply not possible before.

Firstly, CSS3 allows us to use new methods, such as RGB and HSL, for declaring
color . In addition, it enables us to use those two methods alongside an alpha channel
(RGBA and HSLA respectively).

RGB color
RGB (Red, Green, and Blue) is a coloring system that's been around for decades.
It works by deining different values for the red, green, and blue components of a
color. For example, the red color used for the odd numbered navigation links on
the And the winner isn't... site is currently deined in the CSS as a hex (hexadecimal)
value, #fe0208:

nav ul li:nth-child(odd) a {

 color: #fe0208;

}

However, with CSS3, it can equally be described as an RGB value:

nav ul li:nth-child(odd) a {

 color: rgb(254, 2, 8);

}

CSS3: Selectors, Typography, and Color Modes

[138]

Most image editing applications show colors as both hex and RGB values in their
color picker. The following screenshot shows the Photoshop color picker, with the R,
G, and B boxes showing the values for each channel:

You can see that the R value is 254, the G value is 2 and the B value is 8. Which is
easily transferable to the CSS color property value. In the CSS, after deining the
color mode (for example, rgb) the values for red, green and blue colors are comma
separated in that order within parenthesis.

HSL color
Besides RGB, CSS3 also allows us to declare color values as HSL (Hue, Saturation,
and Lightness).

HSL isn't the same as HSB!

Don't make the mistake of thinking that the HSB (Hue, Saturation, and
Brightness) value shown in the color picker of image editing applications
such as Photoshop is the same as HSL—it isn't!

Chapter 5

[171]

What makes HSL such a joy to use is that it's relatively simple to understand the
color that will be represented based on the values given. For example, unless you're
some sort of color picking Ninja, I'd wager you couldn't instantly tell me what
color rgb(255, 51, 204) is? Any takers? No, me neither. However, show me the
HSL value of hsl(315, 100%, 60%) and I could take a guess that it is somewhere
between Magenta and Red color (it's actually a festive pink color—perhaps I'm
starting to like Moulin Rouge after all). How do I know this? Simple…

HSL works on a 360° color wheel. The irst igure in a HSL color, represents Hue,
and has Yellow at 60°, Green at 120°, Cyan at 180°, Blue at 240°, Magenta at 300° and
inally Red at 360°. So as the aforementioned HSL color had a hue of 315, it's easy
to know that it will be between Magenta (at 300°) and Red (at 360°). The following
two values for saturation and lightness, speciied as percentages, merely alter the
base hue. For a more saturated or colorful appearance, use a higher percentage in the
second value. The inal value, controlling the lightness, can vary between 0 percent
for black and 100 percent for white.

So, once you've deined a color as an HSL value, it's also easy to create variations on
it, merely by altering the saturation and lightness percentages. For example, our red
navigation links can be deined in HSL values as follows:

nav ul li:nth-child(odd) a {

 color: hsl(359, 99%, 50%);

}

If we wanted to make a slightly darker color on hover, we could use the same HSL
value and merely alter the lightness (the inal value) percentage value only, as shown
in the following code snippet:

nav ul li:nth-child(odd) a:hover {

 color: hsl(359, 99%, 40%);

}

In conclusion, if you can remember the mnemonic Young Guys Can Be Messy
Rascals (or any other mnemonic you care to memorize) for the HSL color wheel,
you'll be able to approximately write HSL color values without resorting to a color
picker and also create variations upon it. Show that trick to the savant backend PHP
and .NET guys at the ofice party and earn some quick kudos!

CSS3: Selectors, Typography, and Color Modes

[138]

Fallback color values for IE6, IE7, and IE8
As you might have guessed, RGB and HSL are not supported in Internet Explorer
versions below IE9. Therefore, if a fallback color declaration is needed for these
browsers, specify it irst before the RGB or HSL value. For example, the navigation
link rule deined above could have a hex fallback speciied like this:

nav ul li:nth-child(odd) a {

 color: #fe0208;

 color: hsl(359, 99%, 50%);

}

Alpha channels
So far you'd be forgiven for wondering why on earth we'd bother using HSL or RGB
instead of our trusty hex values we've been using for years. Where HSL and RGB
differ from hex is that they allow the use of an alpha transparency channel. This
means one element with an alpha transparency will show what's beneath it.

Let's make some amendments to the And the winner isn't... home page to illustrate.
First, we'll set a grungy background image in the body element, as follows:

body {

 background: url(../img/grunge.jpg) repeat;

}

Now, we'll add a white background in the #wrapper div (which encloses all the other
elements). However, instead of setting a solid white color with a hex value, we'll set
a HSLA value as shown in the highlighted line in the following code snippet:

#wrapper {

 margin-right: auto;

 margin-left: auto;

 width: 96%; /* Holding outermost DIV */

 max-width: 1414px;

 background-color: hsla(0, 0%, 100%, 0.8);

}

An HSLA color declaration is similar in syntax to a standard HSL rule. However,
in addition, you must declare the value as hsla (rather than merely hsl) and
add an additional opacity value, given as a decimal value between 0 (completely
transparent) and 1 (completely opaque). Here, we have speciied that our white
#wrapper isn't completely opaque. The following screenshot shows how it looks in
the browser:

Chapter 5

[173]

The RGBA syntax follows the same convention as the HSLA equivalent, using an
additional opacity value after the color:

background-color: rgba(255, 255, 255, 0.8);

Hopefully you can see that the addition of an alpha channel to both the RGB and
HSL color modes, allows us a great deal of lexibility when layering elements. It
means that we no longer have to rely on the transparency of images (PNG and GIF
images, for example) to achieve this type of visual effect, which is great news when
building a responsive design.

CSS3: Selectors, Typography, and Color Modes

[138]

Why not just use opacity?

CSS3 also allows elements to have opacity set with the opacity
declaration. A value is set between zero and one in decimal increments
(for example, opacity set to 0.1 is 10 percent). However, this differs from
RGBA and HSLA in that setting an opacity value on an element affects the
entire element. Whereas, setting a value with HSLA or RGBA meanwhile
allows particular parts of an element to have an alpha layer. For example,
an element could have an HSLA value for the background but a solid
color for the text within it.

The CSS3 Color module was the irst of the CSS3 modules to reach the advanced
Recommendation stage. Therefore, like the CSS3 Selectors module, CSS3 Colors are
good to use right away, safe in the knowledge that the method of implementation is
unlikely to change from this point onwards.

Summary
In this chapter, we've learned how to easily select almost anything we need on the
page with CSS3's new selectors. We've also looked at how we can make responsive
columns for content in record time and solve common and annoying problems such
as long URL wrapping. We now also have an understanding of CSS3's new color
module and how we can apply colors with RGB and HSL complete with transparent
alpha layers for great aesthetic effects. In this chapter, we've also learned how to add
custom fonts to a design with the @font-face rule, inally freeing us from the shackles
of the humdrum selection of "web-safe" fonts we're used to designing with. Despite
all these great new features and techniques, we've only picked at the surface of what
we can do with CSS3. Let's move on now and look at even more ways CSS3 can
make a responsive design as fast, eficient, and maintainable as possible with CSS3
text shadows, box shadows, gradients, and multiple backgrounds.

