CSS3: Selectors, Typography,
and Color Modes

In Chapter 1, Getting Started with HTML5, CSS3, and Responsive Web Design, we

noted that the number of people viewing websites over mobile telecom networks

is ever increasing. As current telecom network speeds vary enormously, we need

to consider the bandwidth and therefore load time of the websites we build. Back

in the day we had to consider how long our pages and the images and media they
contained would take to load over a 56K modem. Now, we face similar loading time
challenges. Just as the percentage rules of table-based layouts are re-emerging, so

is the need to re-examine every piece of media and bandwidth sapping content we
add to our pages. Although our devices are now mobile, the speeds they download
content and the premium they face for doing so (speed and cost) is comparable to
years gone by. Everything old is new again! Thankfully, CSS3 can heavily reduce
our reliance on images for visual flair giving us the tools to create beautiful sites
that also download in record time. There's lots of CSS3 for us to cover. Chapter 6,
Stunning Aesthetics with CSS3, will deal with more specific CSS3 techniques including
text shadows, box shadows, gradients, and backgrounds whilst Chapter 7, CSS3
Transitions, Transformations, and Animations, will look at CSS3 animations,
transforms, and transitions.

In this chapter, we will learn the following CSS3 fundamental:

o What CSS3 offers the frontend developer

e Quick and handy CSS3 tricks (multiple columns and word wraps)
e The anatomy of a CSS rule

e What vendor-specific prefixes are and how to use them

o New CSS3 selectors and how they work

e Custom typography with efont-face

¢ How to use RGB and HSL color modes with Alpha tranparency

CS53: Selectors, Typography, and Color Modes

What CSS3 offers the frontend developer

In the past, we either gambled that users would put up with long load times for
the sake of a great design (they wouldn't, by the way!) or we ditched images, often
compromising our design ideals, for the sake of usability. CSS3, in many ways
negates the need for compromise. With just a few lines of code (and no images!) CSS3
can produce onscreen elements such as rounded corners, background gradients,
text shadows, box shadows, custom typography, and multiple background images
(alright, granted, that one does require images). If that wasn't enough, much of

the basic interaction for which we have previously relied on JavaScript, such as
hover state animations, can also be handled with pure CSS3. There are heaps of
CSS3 goodies and economies that will elevate our responsive design from merely
"a normal website made responsive" to a responsive website built for the future.
By utilizing CSS3, we will enable our responsive design to load faster, require less
resource and be far easier to maintain and amend in the future. Before we get into
that, let's deal with the "Elephant in the room".

CSS3 support in Internet Explorer
versions 6 to 8

With a few exceptions (such as @font - face), few features of the new CSS3 modules
are supported by Old IE (Internet Explorer versions 6, 7, and 8). Should you use CSS3
in your design? As ever in web development, the answer is "it depends".

Personally, at present, I principally use CSS3 to enhance a site, rather than provide
essential functionality. I'm entirely comfortable with elements looking a little different
in different browsers. I believe you and your clients should be too. You might find

it helpful to refer back to the Educating our clients that websites shouldn't look the same

in all browsers section in Chapter 1, Getting Started with HTML5, CSS3, and Responsive
Web Design. Which parts of a design are critical to it "working" or "looking right" is
subjective. But it's worth knowing that there are many polyfills available for adding
CSS3 functionality to Old IE. Applying such polyfills, should you choose to follow that
path, is discussed more in Chapter 9, Solving Cross-browser Responsive Challenges.

_ For a full list of what CSS 2.1 and CSS3 features are supported in the
& differing versions of Internet Explorer, head over to the following URL:
Ko

http://msdn.microsoft.com/en-us/library/
cc351024%28v=vs.85%29.aspx

[138]

Chapter 5

Using CSS3 to design and develop pages in
the browser

I can't speak for you but I find re-making images tiresome. You know the kind of
comment I'm talking about, "Could we make those corners a little rounder?" or "Can
the gradient be a little darker at the top?" Once we've dutifully made the amends,
we often hear the inevitable, "Oh, no, it was better the way it was. Can you swap it
back?" Now, of course, this to-and-fro process is necessary; after all, we often want
to tweak a design just to see how it looks. However, CSS3 lets you do much of this in
mere seconds, within the code, rather than minutes within the graphics editor.

Anatomy of a CSS rule

Before exploring some of what CSS3 has to offer, to prevent confusion, let's establish
the terminology we use to describe a CSS rule. Consider the following example:

.round {
border-radius: 10px;

}

This rule is made up of the selector (. round) and then the declaration
(border-radius: 10px;). However, the declaration is further defined by
the property (border-radius:) and the value (10px;). Happy, we're on the
same page? Great, let's press on.

Vendor prefixes and how to use them

As the CSS3 Modules specifications have yet to be either ratified by the W3C or have
all their proposed features fully implemented into browsers, browser vendors use
what's known as vendor prefixes to test new "experimental" CSS features. Whilst
this helps browser makers implement the new CSS3 modules, it makes our lives, as
writers of CSS3, just a little more tedious. Consider the following code for a rounded
corner in CSS3:

.round{
-khtml-border-radius: 10px; /* Konqueror */
-rim-border-radius: 10px; /* RIM */
-ms-border-radius: 10px; /* Microsoft */
-o-border-radius: 10px; /* Opera */
-moz-border-radius: 10px; /* Mozilla (e.g Firefox) */
-webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */
border-radius: 10px; /* W3C */

[139]

CS53: Selectors, Typography, and Color Modes

You can see a number of vendor prefixed properties (and that is by no means an
exhaustive list), each with their own unique prefix, for example, -webkit- for
Webkit based browsers, -ms- is the Microsoft prefix, so covers the Internet Explorer,
and so on. Due to the way CSS works, a browser will go line by line down the
stylesheet, applying properties that apply to it and ignoring ones that don't.

Furthermore, applicable properties later in the stylesheet take precedence over
earlier ones. Thanks to this cascade, we can list our vendor-prefixed properties first
and then the correct (but perhaps yet to be implemented) non-prefix version last, safe
in the knowledge that when the feature is fully implemented, the correct version will
be implemented by the browser, rather than the experimental, browser-specific one
listed before it.

Clippings and JavaScript for quick CSS3 prefixes

You may find it handy to keep clippings of common CSS3 rules
containing all the necessary vendor prefixed properties. That way you
M can just paste them in without needing rewrite them all each time. Many
Q code-editing programs (or Integrated Development Environments
(IDES) as they are often labeled) have code clip features and when using
CSS3 they can save a lot of time. There's also JavaScript solutions that
automatically add prefixes to CSS files, check out "-prefix-free", a great
solution, at http://leaverou.github.com/prefixfree/.

It's acceptable to list every vendor prefix version of a property. However, in reality,
few people do. Instead they either target the browsers they expect to see most often
or check what browsers support the feature before writing the rule. For example, you
might just opt to go with:

.round{
-moz-border-radius: 10px; /* Mozilla (e.g Firefox) */
-webkit-border-radius: 10px; /* Webkit (e.g. Safari and Chrome) */
border-radius: 10px; /* W3C */

}

That would cover Firefox, Chrome, and Safari, along with any browser that has fully
implemented the rule.

I know what you're thinking, isn't listing multiple vendor prefixed versions of the
same property going to lead to code bloat? Well, a little yes. But no matter how many
prefixed properties we add, it's still a faster, more elegant and robust solution than
using images.

[138]

Chapter 5

Before working on a site, it's wise to look at the current browser usage statistics.
In doing so, you'll have a better idea of what browsers you need to build specific
support for. For example, if time and budget are tight, you might decide to omit
vendor specific prefixes for any browser with less than 3 percent usage rate for
your site. As ever, you need to make a judgment based on a number of variables.

Now, we understand what the prefixes are and how to apply them in our rules.
Let's look at some quick and useful little CSS3 tricks.

When can I use specific CSS3 and HTMLS5 features?

Suggestions Kl Feed & Twitte 862
When can I use... % witter 85

Compatibility tables for support of HTMLS, C553, SVG and more in deskiop and mobile browsers.]
I
| ToP

Latesr upciave: (10 Flanprm Preview J relegses] (Sepeamber 14, 2011)

Browsery HIMLAGESES Ao St HIMAS Enrciing
Search:
{medid J
1 result found
Il\du| - 70 |[Resnurces || Embed

- Show options

= Supported = Mot supported = Partally supported = Support unknown
.‘l + €553 Media Queries - candigate Recommandation Siohat “'"::W;
Mathad of applying styies based on meadia information. Includes things ke page and device dimensions Partisl support: 0.03%

Resources: IE dema nooe wilh infermation - Dema pags for Dage width

Total, 8312%

3 wersions back 6.0 3.6 32 10.0 10.6

2 vorslons hack 740 4.0 4.0 11.0 1.0 3.2 100 21
Prevauserson 8,0 5.0 5.0 12.0 111 4,041 10 22

Curent | 6.0 13.0 115 4.2-4.350-6011.1 23 30
Naae futurs 2 7.0 i 14.0 12.0

Flarther fubire 10.0 8.0 60 15.0 12.1

Mote) Incompite suppor by older wobkit browsery refers to only atknowiedging different medsa rules on page reload E

As we delve into CS53 more and more, I can heartily recommend visiting
http://caniuse.con, if you ever want to know what the current level
of browser support is available for a particular CSS3 or HTMLS5 feature.
Alongside showing browser version support (searchable by feature) it
also provides the most recent set of global usage statistics from
http://gs.statcounter.com.

[141]

http://caniuse.com
http://caniuse.com
http://gs.statcounter.com
http://gs.statcounter.com

CS53: Selectors, Typography, and Color Modes

Quick and useful CSS3 tricks

In my day-to-day work, some of the new CSS3 features I use constantly and others
I've never needed. Before getting into the heavier stuff, I thought it might be useful to
share a couple of CSS3 goodies that make life easier, especially in responsive designs,
by accomplishing simple tasks that used to be minor headaches.

CSS3 multiple columns for responsive
designs

Ever needed to make a single piece of text appear in multiple columns? Until CSS3,
you'd need to separate the content into different markup elements and then style
accordingly. Altering markup for stylistic purposes is never a good practice. CSS3
allows us to span one or more pieces of content across multiple columns. Consider
the following markup:

<div id="main" role="main">

<p>lloremipsimLoremipsum dolor sit amet, consectetur
// LOTS MORE TEXT //
</p>

<p>lloremipsimLoremipsum dolor sit amet, consectetur
// LOTS MORE TEXT //
</p>
</div>

You can make all that content flow across multiple columns that are either: a certain
column width (for example, 12em) or certain number of columns (for example, 3).
Here's how:

For a certain width of column, use the following syntax (note that vendor prefixes
have been omitted for brevity):

#main {
column-width: 12em;

}

This will mean, no matter the viewport size, the content will span across columns
that are 12 em in width. Altering the viewport will adjust the number of columns
displayed dynamically.

[138]

Chapter 5

For example, here it is in Safari with a 1024 px wide viewport:

columns.html
€A file: /{/Users /benfrain/Sites/BFR1-GIT /columns.html

< = -
[(2]0]3] [maximum][4s0x320 || so0x4s0 || s60x640 || 1024x768 |
| s columns.html

llorem ipsimLorem ipsum dolor sit
amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrad
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum.Lorem ipsum
dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum Lorem ipsum
dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum.

llorem ipsimLorem ipsum dolor sit
amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ue
labore et dolore magna aliqua. Ut
cenim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
cu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum.Lorem ipsum
dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.

3§ Coogle

Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum Lorem ipsum
dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt
in culpa qui officia deserunt mollit
anim id est laborum.

And the following screenshot shows how the same page renders on an iPad with a

768 px wide viewport:

Uniities

0 m e«

Horem ipsimLorem ipsum dolor it
cetetur mdipisicing ehit,
sed do eiusmod tempor incidsdunt ut
labore et dolore magna alqua, U
enum ad M veniam, quis mostrd
exercitation ullameo laboris nisi wl
aliquip ex ca commodo consequal
Duis aute inire dolor in

amel, ¢

reprehenderit in voluptate velit esse
willum dolare eu 1 nulla
paratur, Excepleur int occaccat
cupidatal non prowdent, sunt in culpa
qui officis deserunt mollit anim id
st lnborum Lorem ipsum dolor sit
amet, consectetur adipisicing elin,
sed do chusmod tempor incidadunt ut
labore et dolore magna aliqua, Ut
enim ad minim veniam, quis nostrud

exervitation ullameo laboris nisi w

aliquip ex ea commuodo consequal

Dns aute snwre dolor in
reprehenderit in voluptate velit csse
cillum dolore cu fugist nulla
pariatur, Excepteur sint occaccat
cupidatat non proident, sunt in culpa
qui officia deserunt meollit anim id
aborum. Logem ipsum dolor sit

amet, cunsectetur sdipisicing elit,

gid

sod do ciusmod tempor Cl

est laborum, Lorem ipsum delor =it

amit, i g chit,

|nbore et dolore magna aliqua, Ut
enim ad minim veniam, guis nostrud
exercitation ullamco lak
aliquip ex ea commodi consequat
Duis sute irure dolor in

reprehenderit in volupeate velit esse

nisl ut

cillum dolore eu fugis

parkatur, Excepleur sind oc

cupidatol non provdent, sunt in culpa
qui officia descrunt mollit aim id
st laborum

lorem ipsimLorem ipsum dolor sit
amet, conscetetur sdipisicing clit,
sed do crusmod tempor incadidunt ut
labare et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi w
aliquip ex ¢a commodo consequat
Duis aute inere dolor in
reprehendenit in voluptate velit esse
nulla

paratur. Excepleur sinl occaecat

eillum dobore en fig

cupidatol non proident, suni in culpa
qui officin deserunt mollit anim id

sed do crusmod tempor incididunt ut
lahare et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi
aliquip ex ca commodo consequat
Duis aute irure dolor in
reprehendenit in voluprate velit esse
willum dolore en fagant nulla
pariatur, Excepleur saml occascal
cupidatat non protdent, sunt in culpa
qui officia descrunt mollit anim id
st lnborum Lorem ipsum delor sit
amet, consectetur adipisicing elt,
sed do clusmod tempor incididunt ut
labore et dolore magna aliqua. U
enim ad minim veniam, quis nostrud
exercitation ullameo laboris nisi w
algquep ex ea commodo consequal
Dy aute snere dolor in
reprebenderit in voluptate velit cae
cillum dolore cu fugist nulla
pariatur, Excepteur simt sccaccat
cupidatar non protdent, suni in culpa
aqui officia deserant mallic anim id
est laborum

[143]

CS53: Selectors, Typography, and Color Modes

A beautifully responsive layout requiring the minimum of work —I like it!

If you'd rather keep a fixed number of columns and vary the width, you can write a

rule like the following:

#main {

column-count: 4;

Adding a gap and column divider

We can take things even further by adding a specified gap for the columns and a

divider:

#main {

column-gap:
column-rule:
column-width:

2em;

1l2em;

thin dotted #999;

This gives us a result like the following;:

4 0D m e

Unditled

Hosrem ipsimlorem ipsm dolor sit
amet, sonsectetur adips
sed do ciusmod tempor incididunt
ut lnbore ¢t dolore magna aligua.
Ut enim ad minim veniam, quis
nostrud exercitation ollumea
laboris nisi ut aliquip ex ca
commode consequat. Duis aute
irure dolor in reprehenderit in

e velil exse cillum dolore

at nulla pariatur. Excepteur
sint eccaccal cupidatal mon
proident, sunt in culpa qui officia
deserunt moallit anem i ext
Jaberum, Lorem ipsum dolor it
amet. consectetur adipisicing ¢lit,
sed do clusmod tempor incididunt
ut lnbore ci dolore magna aliqua.
Ut enitn aul i veniam, quis
nostrud exercitation ullameco
labonis nisi ut aliquip ex ca
commoda consequat, Duis sute
imure dodor in reprehenderit in
wolupiate velit esse cillum dolone
e fugiat nulla pariatur. Excepteur
sint occaccat cupidatat non
proident, sunt m culpa qui officia
deserunt mollit woim i est
laborim. Lorem ipsum dolor sit

el consectetur adipisicing elit

sed dbor eivsmod fempaor incididunt

ut labore et dolore magna aliqua.
Ut enim ad minim veniom, gquis
nostrud excreitation ullameo
Iuboris nisi ul aliquip ex e
commado consequat. Duis aute
irure dolor i reprehenderit in

¢ cillum dolore

atur, Fxceplenr
sint ocesecat cupidatal non
proident. sunt in culpa qui officia
deserunt mollit anim 1d est

lorem ipsimLorem ipsum dolor sit
amet, eomsectetur adipisicing elit,
s o ciiismiod tempur medidind
ut labore et dolore magna aliqua.
Ut crum: ad minim veniom, quis
nostrud exercitation ullameo
laboris nisi ut aliquip ex en
commado consequat. Duis aute
wrure dolor n henderit in

laborum, Lorem ipsum dolor sit
amet, consectelur adipisicing elit
sed do ciusmod tempor incididunt
ut lnbore ct dolore magna aliqua.
Lt enim ad minim veniam, quis
nostrud exercitation ullimco
labworis nisi ut aliquip ¢x ca
commods consequat, Duis aute
irure doler in reprehenderit in
woluplate velit esse cillum dolore
en fugiat nulla pariater. Excepteur
sint occaccat cupidatat non
preident, sunt in culpa qui officia
deserunt mollit anim b est
laborum, Lorem ipsum dolor sit
amet, consectetur adipisicing clit,
sed do ciusmod tempor incididunt
ut labore et dolore magna aliqua.
Ut i s ervimions veniam, quis
nostrud exercitation ullameo
laboris misi ut aliquip ex ca
commodo consequat, Dues aute

rure dolor in reprehendenit in
1

voluptate velit esse cillum dolore
en figiat mlla pariatur, Fxceptenr
sint occaccat cupidatat non
proident, sunt in culpa qui officia
deserunt mollit anim 1d est

it velit e cillum dolore
cu fugiat nulla pariatur. Excepteur
sint occaccat cupidatat non
prewdent, sunt i culpa qui officia
deserumt mollit snim il est

laborum.

[138]

To read the specification on the CSS3 Multi-column Layout Module, visit
http://www.w3.0org/TR/css3-multicol/.

For the time being, remember you'll need to use vendor prefixes on the column

declarations for maximum compatibility.

Word wrapping

How many times have you had to add a big URL into a tiny space and, well,

despaired? Take a look at the problem in the following screenshot; notice the URL at

the bottom right breaking out of its allocated space:

[Denfrain.com fwatiie-c

(1) Wabsite devign Cheshire. Cangl [+T
— —CPUT T YT T G i Lo e

Photoshop/Fireworks to providing my front-end
HTMLS, CS53 and jQuory skills to design
apencles in the Cheshire, Manchester and
Birmingham area. 1

@ Semantic HTMLS & CSS3 code

1 build websites using valld 115 and
codn; the internations]l standards of web
code. By designing and building websites that
validate 1o internstional standards your website
ts guaranteed o work in all major web Browsing
platforms; everything from smart phones to
desktops. Building weh sites with standards
compliant code also means the littie web robots
from ein properly understand the content

of your wab site and rank it accordingly.

ﬁ E-commerce

I've built numerous e-commerce websites. I'm
confident I can tailor a solution to suit your
needs. Whather it's merely a way of selling one
or two items online or processing thousands of
transactions a day. chances are, | have bullt

g Browser Compatibility

1 ensure that your website will be compatibis
with all major, standards comptiant, Intornet
browsers. My emphasis is on supporting the
growing numbar of smart phone users (

). Like it ar not
- they are the future!

ﬁ‘i’l Search Engine Optimisation

Want to ba top of 7 Unlike the Hes black
magic spouted by many SEOQ sirateglsts, the only
reliable way to get up the rankings is to produce
readahle, semantically coded and useful content
for users - and then enjoy bigger and busier
wabgites linking to It Stuffing your site full of

ks a technigque of the dark ages.
Instead, by working with you to make your
wahsite content as appealing and useful a5
possible and then submitting it to the major
search engines your website WILL be found and
the content ranked accordingly.

il How sites I've built rank...

Like Welght Watchers (other diets are available)
for web code. This keeps your site a mean, lean,
information serving machine.

T Technology experience

T've got & brosd experience base, hiving worked
un everything from single page websites to fully
bespoke e-commerce systems basod on Magenta,
Cubecart and Opencart. 've also produced
articles covering C5S5 and HTML for magazines

likn and and written a

. Hore's a list of my core sxprionce aras:

* Photoshop PSD to (OHTML & CS5
conversion

+ WIC Web standards and content semantics

» "Mohiln first’ responsive designs

= {Phone. [Pad and Deshtop designs

+ E-commerce systems and PCI-DSS
complinnce

» Cross browser compatibility

= Progressive enhancement/grsceful
degradation

= Content Management Systems

« HTMLS, C$53 and jQuery

* Word Wrapping expertise

= 1436RA7R

CSS3 fixes this problem with a simple declaration, which as chance would have it,
also works in older versions of Internet Explorer as far back as 5.5!

word-wrap: break-word;

[145]

CS53: Selectors, Typography, and Color Modes

Adding this to the containing element gives an effect as shown in the following
screenshot. Hey presto, the long URL now wraps perfectly!

Website design Che:
VATHETE §

HIEERANONA] Stanaards Your wenaits

1= quaranteed to work (n &l major web browsing

platforms; averything from smart
dusktops. Building web sites with standands
compliant code also means the little web robots
from can properly understand the content

of your web site and rank it accordingly,

ﬁ E-commerce

I've bullt numerous e-commerce websltes. I'm

confident I can tallor & solation to suit your

needs, Whothor it's morely o way of

or two items online ol ds of

transactions a day, chances ara, | have built

FIII Cour v D opumoderon

Want to be top of 7 Unlike the Wee black
magic spouted by many SEQ strategists, the only
meliable way Lo get up the renkings is W produce
mueadable, semantically coded and useful content
for users - and then enjoy bigger and buster
websltes Unking to it. Stuffing your site full of

is & technique of the dark ages.
Instead, by working with you to make your
wahalte content as appealing and useful as
possible and then submitting It to the major
search engines your website WILL be found and
the content ranked accordingly.

il How sites I've built rank...

g L)

LI CUVET 30 AL T E L O R e

like and and written &

. Here's a list of my core experience areas:

+ Photoshop PSD to (X)HTML & CS5
conversion
+ W3C Web standards and content semantics
obile first’ responsive designs

ne, {Pad and Deskiop deslgns
proe systems and PCL-DSS

s Ex

compliance

» Cross browser compatibility

+ Progressive enhancement/graceful
degradation

Betpfwww thisisalinkthatistartoolangfortha
containingelementundyvthereits.com

416878

New CSS3 selectors and how to use them

CSS3 gives incredible power for selecting elements within a page. You may not think
this sounds very glitzy but trust me, it will make your life easier and you'll love CSS3
for it! I'd better qualify that bold claim...

CSS3 attribute selectors

You've perhaps used existing CSS attribute selectors to target rules. For example,
consider the following rule:

imglalt] {
border:
}

This would target any image tags in the markup which have an alt attribute:

3px dashed #el5f5f;

[138]

Chapter 5

You can also narrow things down by specifying what the attribute value is. For
example, consider the following rule:

img[alt="atwi oscar"] ({
border: 3px dashed #elS5f5f;

}

This would only target images which have an alt attribute of atwi_oscar. So far, so
big deal we could do that in CSS2. What is CSS3 bringing to the party? Principally,
three new "substring matching" attribute selectors...

CSS3 substring matching attribute selectors

CSS3 lets us select elements based upon the substring of their attribute selector. That
sounds complicated. It isn't! We can now select an element, based on the contents of
the attribute. The three options are whether the attribute is:

e Beginning with the prefix
¢ Contains an instance of

e Ends with the suffix

Let's see what they look like.

The "beginning with" substring matching attribute selector
The "beginning with" substring matching attribute selector has the following syntax:

Element [attribute”="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
began with £ilm, I would write the following rule:

imglalt®="film"] {
border: 3px dashed #el5f5f;

}

The key character in all this is the * symbol which means "begins with".

The "contains an instance of" substring matching attribute
selector

The "contains an instance of" substring matching attribute selector has the
following syntax:

Element [attribute*="value"]

[147]

CS53: Selectors, Typography, and Color Modes

In practical use, if I want to select all images on the site that had an alt attribute that
contained £i1m I would write the following rule:

imglalt*="£film"]
border: 3px dashed #elS5f5f;

}

The key character in all this is the * symbol which means "contains".

The "ends with" substring matching attribute selector
The " ends with " substring matching attribute selector has the following syntax:

Element [attribute$="value"]

In practical use, if I want to select all images on the site that had an alt attribute that
ended with £ilm I would write the following rule:

imglalt$="£film"]
border: 3px dashed #elS5f5f;

}

The key character in all this is the $ symbol which means "ends with".

A practical, real world example

How can these substring attribute selectors actually help? Let me give you an
example where I often use CSS3 attribute selectors. If I build a website with a
Content Management System (for example, Wordpress, Concrete, or Magento), it
often gives the client the ability to add new pages. For example, perhaps they are
adding a piece of news about their company or a product update. Each time they add
a page in the CMS, the generated HTML will include an ID value for the <body> or
other relevant tag, which helps distinguish the page, markup wise, from others. For
example, one client was involved in Motorsport and had a "Racing History" section
with yearly reports. Each <body> tag would have an ID for the year:

<body id="2003">

IDs can start with numbers in HTML5

1 If you're not used to coding in HTMLS5, you might assume that an ID
< beginning with a number is invalid, as it was in HTML 4.01. However,
HTML5 removes that restriction, the only things to remember with ID
names in HTMLS5 is that there should be no spaces in the ID name and it
must be unique on the page. For more information visit http://dev.
w3 .org/html5/spec/Overview.html#the-id-attribute.

[138]

Chapter 5

I needed the navigation bar link for "Racing History" to be highlighted when any
of these yearly pages were viewed, as they related to the "Racing History" section.
However, rather than write a style rule covering every future year, I was able to
write a defensive (they are sometimes referred to as "defensive" rules as they try
and safeguard against future events) CSS3 rule:

body [id®="2"] .navHistory { color: #00b4ff; }

This means that any element with a class of .navHistory, that is a descendant of

a body with an ID beginning with 2 (for example, 2002, 2003, 2004, and on) will be
colored with the hex value of #00b4££. One simple rule covers all eventualities.
Unless of course the website is still in its current form by the year 3000 —in which case,
chances are, even if I eat and exercise well, I won't be able to continue its upkeep...

CSS3 structural pseudo-classes

The more often you code websites, the more often it's likely you'll need to solve

the same problem again and again. Let's consider a typical example. Horizontal
navigation bars are often made up of a number of equally spaced <11 links.
Suppose we need margin to the left and right side of each list item, except for the first
and last list item. Historically, we have been able to solve this problem by adding a
semantically superfluous classname to the first and last <1i> elements in the list, as
shown in the highlighted lines in the following code snippet:

<li class="first">Why?</1li>
Synopsis</1li>
Stills/Photos</1li>
Videos/clips</1li>
Quotes</1li>
<li class="last">Quiz</1li>

And then by adding a couple of rules in the CSS, we can amend the margin for those
two list items:
11 {
margin-left: 5%;
margin-right: 5%;

}

.first {
margin-left: Opx;

}

.last {
margin-right: Opx;

}

[149]

CS53: Selectors, Typography, and Color Modes

This works but isn't flexible. For example, when building a website built on a CMS
system, list items for linking new content might be added automatically, so it might
not be a simple task to add or remove the last or first class to the correct list item
in the markup.

The :last-child selector

CSS2.1 already had a selector applicable for the first item in a list:
li:first-child

However, CSS3 adds a selector that can also match the last:
li:last-child

Using these selectors together, we don't need any additional classes in our markup.

We'll fix up our And the winner isn't... site navigation using this and a combination
of the display: table property. The following screenshot shows how things
look currently:

And the winner s
| (3 o & 0 -,

BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuUIZ

Unsung heroes...

sem ! EVERY YEAR
4 A ' WHENI|WATCH
THE OSCARS I'M
ANNOYED....

that films like King Kong, Moulin Rouge and Munich get the

statue whilst the real cinematic heroes lose out. Not very Hollywood

ML '._N ROUGE

is it?

We're here to put things right
those should have wiom =

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[LI4AE1006

[138]

Chapter 5

Now, let's take a look at the graphic mockup:

WHY?

[VVVVVVVVVVVVVVVVVVVVVVVVY |
AND THE WINNER IS

UNSUNG HERDES...

full info.) full info.)

OVERHYPED NONSENSE...

i fullinfa. fullinfa._J

| AAAAAAAAAAAAAAAAAAAAAAAAA |

SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES auiz

EVERY YEAR

WHEN | WATCH THE
OSCARS I'M ANNOYED...

that films ke King Kong, Moulin
Rouge 2nd Munich gef the siatue

THESE SHOULD HAVE WON 2>

NOTE: OUR OPINION 15 ABSOLUTELY CORRECT. YOU ARE WRONG, EVEN IF YOU THINK YOU ARE RIGHT. THAT'S A FACT, DEAL WITHIT

The navigation bar links span the full width of the design, which we need to
replicate. Our markup for the navigation looks like this:

<nav role="navigation">

<a
<a
<a
<a
<a
<a

</uls>

</navs>

href="#">Why?</1i>
href="#">Synopsis</1li>
href="#">Stills/Photos</1li>
href="#">Videos/clips</1li>
href="#">Quotes</1i>
href="#">Quiz</1li>

[151]

CS53: Selectors, Typography, and Color Modes

First, we'll set the nav element to be a table:

nav {
display: table;
/* more code... */

}
Then the to be displayed as a table-row:

nav ul {
display: table-row;
/* more code... */

}
And finally the list-items to display as table-cells:

nav ul 1i {
display: table-cell;
/* more code... */

}

This means that if extra list items are added, they will automatically space
themselves accordingly. Finally, we'll use our CSS selectors to align the text to the
right and left of the first and last list items:

nav ul li:last-child {
text-align: right;

}

nav ul li:first-child {
text-align: left;

}

[138]

Chapter 5

Then in the browser, our navigation is approaching our original composite:

And the winnes ian't

- Cooe IR - e

|
N0 And the winnes bt

A AAAAAAAAAAAAAAAAAAAAAAAAAAAALA
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QUIZ

EVERY YEAR
WHEN | WATCH
THE OSCARS I'M
ANNOYED...

that films like King Kong, Moulin Rouge and Munich get
the statue whilst the real cinematic heroes lose out. Not very
Hollywood is it?

We're here to put things right.
fhese should have won =

OTE: OUR ORINION |5 ABSOI X U ARE WRONG THINK YOU ARE FIGHT, THAT'S A FACT. DEAL WITH IT

AAAAAAAAAAAAAAAAAAAAAAAA

[} 1133010848

AAAA

Don't worry; these tables are only for display!

You may be wondering what on earth I'm thinking of, to suggest that

we use a table for the navigational layout. However, don't forget, these

~ tables are only presentational. That means they exist only in the CSS and

Q are nothing to do with the markup. We are merely telling the browser

we want those elements to appear and behave as if they were a table, not
actually be a table. Displaying the markup in this manner also doesn't
preclude us from using a different layout type for a different viewport, for
example, display: inline-block for viewports below 768 px.

[153]

CS53: Selectors, Typography, and Color Modes

The nth-child selectors

But what about those alternate colors shown in the navigation bar links of the
original composite? Again, CSS3 has a selector that can solve this problem for us
without the need for additional markup:

:nth-child (even)

Let's use this selector to fix the problem and then we can look at some of the many
ways that nth-child can solve problems that previously required extra markup. I'll
add alternate red links in the navigation bar by adding the following style rule:

nav ul li:nth-child(even) a {
color: #fe0208;

}

And now we have alternate colors in the navigation links:

And the winner isn't

= - Q) é B -

4
| And the winnar iu

LAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QUIZ

Unsung hermes...

EVERY YEAR
WHEN | WATCH
THE OSCARS I'M
ANNOYED...

that films like King Kong, Moulin Rouge and Munich get the
statue whilst the real cinematic heroes lose out. Not very
Hollywood is it?

We're here to put things right.
(e should have won

m IS Al s WO = G TS AF

AAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAA

1171x1036

How about that? Not a line of jQuery in site and no extra markup! What did I tell
you? CSS3 selectors are great!

[138]

Chapter 5

Understanding what nth rules do

Amongst frontend web developers and designers, nothing makes mathematics
weaklings tremble quite like the nth-based rules (well, you know, except maybe
someone asking you to code a little PHP or give them a hand with some REGEX
expressions). Let's see if we can make sense of the beast and gain a little respect from
those backend wizards.

When it comes to selecting elements in the tree structure of the DOM (Document
Object Model or more simplistically, the elements in a page's markup) CSS3 gives
us incredible flexibility with a few nth-based rules — :nth-child(n), :nth-last-
child(n), :nth-of-type(n), and :nth-last-of-type (n). We've seen that we can
use (odd) or (even) values (as we have to fix our navigation above) but the (n)
parameter can be used in another couple of ways:

e Used as an integer; for example, :nth-child (2) —would select the
second item

e Used as a numeric expression; for example, :nth-child (3n+1) —would start
at 1 and then select every third element

The integer based property is easy enough to understand, just enter the element
number you want to select. The numeric expression version of the selector is the part
that can be a little baffling for mere mortals. Let's break it down. For practicality,
within the brackets, I start from the right. So, for example, if I want to figure out
what (2n+3) will select, I start at the right (from the third item) and know it will
select every second element from that point on. I've amended our navigation rule to
illustrate this:

nav ul li:nth-child(2n+3) a {
color: #fe0208;

}

As you can see, the third list item is colored and then every subsequent second one
after that (if there were 100 list items, it would continue selecting every second
list item):

() And the winner isn't.

c a =y
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuIZ

[155]

CS53: Selectors, Typography, and Color Modes

How about selecting everything from the second item onwards? Well, although you
could write :nth-child(1n+2), you don't actually need the first number 1 as unless
otherwise stated, n is equal to 1. We can therefore just write :nth-child (n+2).
Likewise, if we wanted to select every third element, rather than write :nth-

child (3n+3), we can just write :nth-child (3n) as every third item would

begin at the third item anyway, without needing to explicitly state it.

The expression can also use negative numbers for example, :nth-child (3n-2)
starts at minus 2 and then selects every third item. Here's our navigation amended
with the following rule:

nav ul li:nth-child(3n-2) a {
color: #fe0208;

}

And here's what it gives us in the browser:

() And the winner isn't

AAAAAAAAAAAAAAAAAAAAAALA
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuIZ

Hopefully, that's making perfect sense now?

The child and last-child differ in that the 1ast-child variant works from the
opposite end of the document tree. For example, :nth-last-child(-n+3) starts at
3 from the end and then selects all the items after it. Here's what that rule gives us in
the browser:

[138]

Chapter 5

() And the winner isn't...

c o = A

VVVVVVVVVVVVVVVVVVVVVVVY
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuiZ

Finally, let's consider :nth-last-of-type. Whilst the previous examples count any
children regardless of type, :nth-last-of-type let's you be specific about the type
of item you want to select. Consider the following markup:

<1li class="internal">Why?</1li>
Synopsis</1li>
<1li class="internal">Stills/Photos</1li>
<1li class="internal">Videos/clips</1li>
<li class="internal">Quotes
<li class="internal">Quiz</1i>

Note that the second list item doesn't have the internal class added to it.

Consider the following rule:

nav ul li.internal:nth-of-type(n+2) a
color: #£fe0208;

}

[157]

CS53: Selectors, Typography, and Color Modes

You can see that we are telling the CSS, "From the second matching item, target
every item with a class called internal. And here's what we see in
the browser:

() And the winner isn't...

£ =N

VVVVVVVVVVVVVVVVVVVVVVVY
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuIZ

CSS3 doesn't count like jQuery!

M If you're used to using jQuery you'll know that it counts from 0 upwards.
Q For example, if selecting an element in jQuery, an integer value of 1
would actually be the second element. CS53 however, starts at 1 so that a
value of 1 is the first item it matches.

The negation (:not) selector

Another handy selector is the negation pseudo-class selector. This is used to select
everything that isn't something else. For example, keeping the same markup as the
previous example, if we change our rule as follows:

nav ul li:not(.internal) a {
color: #£fe0208;

}

You can see that we are opting to select every list item that doesn't have the
internal class . So in the browser, we see this:

[138]

Chapter 5

() And the winner isn't...

=i

AAAAAAAAAAAAAAAAAAAAAAALA
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuIZ

So far we have looked primarily at what's known as structural pseudo-

classes (full information on this is available at http: //www.w3.org/TR/
selectors/#structural-pseudos). However, CSS3 has many more selectors. If
you're working on a web application, it's worth looking at the full list of Ul element
states pseudo-classes (http://www.w3.org/TR/selectors/#UIlstates), as they can;
for example, help you target rules based on whether something is selected or not.

Amendments to pseudo-elements

Pseudo-elements have been around since CSS2 but the CSS3 specification revises

the syntax of their use very slightly. To refresh your memory, until now, p: first-
line would target the first line in a <p> tag. Or p: first-letter would target the
first letter. Well, CSS3 asks us to separate these pseudo-elements with a double colon
to differentiate them from pseudo-classes. Therefore, we should write p: : first-
letter instead. Note that however Internet Explorer 8 and lower versions don't
understand the double colon syntax; they understand only the single colon syntax.

Is :first-line handy for responsive designs?

One thing that you may find particularly handy about the : first-1line
pseudo-element is that it is specific to the viewport. For example, if we write
the following rule:

p::first-line ({
color: #ffocff;

}

[159]

http://www.w3.org/TR/selectors/#UIstates

CS53: Selectors, Typography, and Color Modes

As you might expect, the first line is rendered in an awful shade of pink (I was
thinking of Moulin Rouge at the time):

Al the winner ms

VAAAAAAAAAAAAAAA AR AL ALAL AL AL ST ST
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES QuiZ

; EVERY YEAR WHEN |
WATCH THE OSCARS
I'M ANNOYED...

that films like King Kong, Moulin Rouge and Munich get the statue

whilst the real cinematic heroes lose out. Not very Hollywood is it?

We're here to put things right.
s aboiahd have win »

However, on a different viewport, it renders a different selection of text:

And the winnar i,

CAAAAAAAAAAAANANANARALALALAL A
AND THE WINNER IS

& EVERY YEAR

& WHEN | WATCH
THE OSCARS
'M ANNOYED...

that films like King Kong, Moulin Rouge and

Munich get the statue whilst the real cinematic heroes
lose out. Not very Hollywood is it?

We're here to put things right.
these should have wos =

[138]

Chapter 5

So, without needing to alter the markup, with a responsive design, there's a handy
way of having the first visual (as the browser renders it, not as it appears in the
markup) line of text appear differently than the others.

Hopefully this brief foray into CSS3 selectors illustrates how they help keep a
responsive design and code base free of additional markup. It the past, I've needed
to use a JavaScript library such as jQuery to make complicated selections but CSS3
often negates that need. It's also comforting to know that the CSS3 selectors module
is already at the W3C Recommendation status; so it's a very mature module that's
unlikely to change much from here on.

Custom web typography

For years we've made do with a boring selection of web safe fonts. When some
fancy typography was essential for a design, we've typically substituted a graphical
element for it and used a text-indent rule to shift the actual text from the viewport.

There have been a few further options for adding fancy typography to a page. sIFR
(http://www.mikeindustries.com/blog/sifr/) and Cufén (http://cufon.
shogolate.com/generate/) used Flash and JavaScript respectively to re-make text
elements appear as the fonts they were intended to be. However, with a responsive
design, we want a lean, mean, content-serving machine, and images and code flab
should be avoided where possible. Thankfully, CSS provides a means of custom web
typography that is now ready for the big time.

The @font-face CSS rule

The efont-face CSS rule has been around since CSS2 (but subsequently absent in
CSS 2.1). It was even supported partially by Internet Explorer 4 (no, really)! So what's
it doing here, when we're supposed to be talking about CSS3?

Well, as it turns out, @font - face has been re-introduced for the CSS3 Fonts module
(http://www.w3.org/TR/css3-fonts). Due to the historic legal quagmire of using
fonts on the web, it's only recently started to gain serious traction as the de facto
solution for web typography. There's also the issue of the varying font formats and
implementations from different vendors. For example, the Embedded OpenType
(EOT) font was Internet Explorer's (and not anyone else's) preferred choice of font
format. Others favor the more common place TrueType (TTF), whilst there is also
Scalable Vector Graphics (SVG) and Web Open Font Format (WOFF). When it
comes to using @efont - face for your web typography, there is both good news and
bad. First the bad...

[161]

http://www.w3.org/TR/css3-fonts
http://www.w3.org/TR/css3-fonts

CS53: Selectors, Typography, and Color Modes

Until a single universal format wins out, it's necessary to serve multiple versions
of the same font to cover the different browser implementations. Much as there are
competing video formats, we also need a single font format for the web to emerge
victorious before dropping support for the others.

However, the good news is that adding custom fonts for every browser is now easy.
Let's do it!

Implementing web fonts with @font-face

Let's get the And the winner isn't... site typography licked into shape with the efont -
face CSS rule.

First we need some fonts. There are now a number of great sources for web fonts;
both free and paid. My personal favorite is Font Squirrel (www. fontsquirrel.com)
although Google also offers free web fonts, ultimately served with the efont-face
rule (www.google.com/webfonts). There are also great, paid services from Typekit
(www . typekit.com) and Font Deck (www. fontdeck . com).

Fant Squinel | Free Font Bitsiream Vers Sans by Sitiream

A > | [P o Sontsquineel,com fonts Bitsiream -Vera-Sa v '@ | (3 cooie alle @ .-

& Font Squirrel | Fres Font Bitstre [+

E| Look Professional: Online Involcing
UIRREL ™. Time Tracking & Expense Tracking. Painkess Billing

AEE FOR COMMERCIAL USE

Fo NT Invoicing For Freelan cersm

Home Popular Mecent sfontfacekits efont-face Generator Forum Blog

4 Syben | TrueTypa | M Bieatrsar oot | Vit 3
5 gtont teca Compastin:

Spocimens TewtOrvn GheracterMap Uoews Qfor-fooe Kt
@font-face Kit
This donr's SCanss ARPARNE I Hicw 0L %0 L5 E40N1A9CA CI8 Ambaddng! View we
Cheose & Subsel Subsetting:
English 3 Sutmsting reouces e iumoer of G o e font i make &
nealier e, f ine fon! spRGNS A panicular nguage, & wil
Choose Font Formats: g i the a0y,
AT Feor dAwoer Fevg Formae:
TIF - Wors in most tvowsons excapt € and #hone
P — EOT - i o)
8 Download @font-face Kit .

WOFF - Compressid, omangng standand
SV - PhoneiFas

DRstream Vern Sans Py (AR 4 styles)

1438878

[138]

http://www.google.com/webfonts
http://www.typekit.com

Chapter 5

As chance would have it the fonts used in my composite are all available free from
Font Squirrel (I know, I'm a cheapskate!). They are Bebas Neue, Bitstream Vera Sans
and Collaborate Thin. Having downloaded the relevant @font - face kit for each font
from Font Squirrel a look inside the ZIP file of each reveals the font itself in various
formats (WOFF, TTF, EOT , and SVG) plus a stylesheet . css file containing a font
stack for the font needed. For example, the rule for Bebas Neue is as follows:

@font-face {
font-family: 'BebasNeueRegular';
src: url ('BebasNeue-webfont.eot') ;
src: url ('BebasNeue-webfont.eot?#iefix') format ('embedded-
opentype'),
url ('BebasNeue-webfont.woff') format ('woff'),
url ('BebasNeue-webfont.ttf') format ('truetype'),
url ('BebasNeue-webfont.svg#BebasNeueRegular') format ('svg');
font-weight: normal;
font-style: normal;

}

Much like the way vendor prefixes work, the browser will apply styles from that list
of properties (with the lower properties, if applicable, taking precedence) and ignore
ones it doesn't understand. That way, no matter what the browser, there should be a
font that it can use.

Now, although this block of code is great for fans of copy and paste, it's important
to pay attention to the paths the fonts are stored in. For example, I tend to copy the
fonts from the ZIP file and store them in a folder inventively called fonts on the
same level as my css folder. Therefore, as I'm usually copying this font stack rule
into my main stylesheet, I need to amend the paths. So, my rule becomes:

@font-face {
font-family: 'BebasNeueRegular';

src: url('../fonts/BebasNeue-webfont.eot') ;
src: url('../fonts/BebasNeue-webfont.eot?#iefix")
format ('embedded-opentype"') ,
url ('../fonts/BebasNeue-webfont.woff') format ('woff'),
url ('../fonts/BebasNeue-webfont.ttf') format ('truetype'),
url ('../fonts/BebasNeue-webfont.svg#BebasNeueRegular')

format ('svg') ;
font-weight: normal;
font-style: normal;

[163]

CS53: Selectors, Typography, and Color Modes

It's then just a case of setting the correct font and weight (if needed) for the relevant
style rule. In this case, I want to amend the navigation links to use the new Bebas
Neue font:

nav ul 1i a {
height: 42px;
line-height: 42px;
text-decoration: none;
text-transform: uppercase;
font-family: 'BebasNeueRegular';
font-size: 1.875em; /*30 = 16 */
color: black;

}

And here is how the navigation bar now looks in the browser:

() And the winner isn't

VCVQVVVVVVVVVVVVVVVVVVVVVVVVVVV:D: i
AND THE WINNER IS

WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES uiz

When replacing fonts you'll typically need to amend the font sizing. However,
having put the existing font size calculation in a comment to the side, it's easy to
amend accordingly. An added bonus is that, if the composite uses the same fonts
you are using in the code, you can plug the sizes in direct from the composite file.
For example, my composite shows the "EVERY YEAR..." text as 102 px, so using the
tried and trusted target + context = result technique I can convert this value to ems:

#content hl {
font-family: Arial, Helvetica, Verdana, sans-serif;
text-transform: uppercase;
font-family: 'BebasNeueRegular';
font-size: 6.375em; /* 102 + 16 */

}

Once I've amended the font-family and font-size declarations for all relevant
rules, the front page now looks like the following in Google Chrome (using the
WOFF font format):

[138]

Chapter 5

F—

CAAAAAAAAAAAAAAAAAAAAAAAAAAAN

AND THE WINNER IS
WHY? SYNOPSIS STILLS/PHOTOS VIOEOS/CLPS DUDTES QU

! EVERY YEAR

WHEN | WATCH THE
OSCARS I'M ANNOYED...

ilms like King Kong, Moulin Rouge

and Munich get the stztue whiist the rea
A

= [We're here to put things right
THESE SHOULD HAVE WON »

WOTT: U SPORON 5 ACRLITELY CORREST. YU JGE WSONG. VEN I 100 THNK U0 R AT, THA'E AFACT, EEAL WATH

AAAAAAAAAAAAAAAAAAAAAAAAAAA

The design still isn't perfect but the typography now perfectly mirrors that of our
original composite. For comparison, here's how it's looking on the iPad 2 (which
supports TTF fonts form version iOS 4.2 onwards):

et e winnes L

e T S Ty cw———"
AND THE WINNER IS
WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES Quiz

EVERY YEAR

WHEN | WATCH THE OSCARS
I'M ANNOYED...

King Kong, Moulir

ﬂ THESE SHOULD HAVE WON »

UNSUNG HEROES... OVERHYPED NONSENSE...

[165]

CS53: Selectors, Typography, and Color Modes

Help—my CSS3 @font-face headings
look messy

This problem drove me to distraction when I first started using @font - face fonts to
set my web typography free. It's not particular to responsive designs, it can happen
with any heading that has a @font - face font applied. Here's a portion of a design
composite I was working on:

We're Bridestone:

providing beautiful quality nafural

stone products.

[ial Stone Products ‘B Bespoke :‘W%ﬁm —

7 Restoration 9 Find Us Gateposts: click to see more...

When I had built the site, the relevant markup was as follows:

<div class="intro">

<hl>We're Bridestone: providing beautiful quality
<i>natural</i> stone products.</hl>

.more code..
</div> <!-- intro:END -->

And here was the relevant CSS:

.intro hil {
font-family: CaudexBold, "Times New Roman", Times, serif;
font-size: 2.63636364em;
line-height: lem;

}

.intro hl span {
font-size: 0.545454545em;
font-family: CaudexRegular, "Times New Roman", Times, serif;
font-weight: normal;

[138]

Chapter 5

However, although I was using efont-face so that I could use exactly the same font
as the composite, the header still looked a little messy in the browser:

U _ia LA et e I ekl T & il

We're Bridestone:

providing beautiful quality natural

stone products.

d Stone Products ‘h Bespoke
7' Restoration 9 Find Us

Hopefully you can make out that the We're Bridestone text doesn't match the
composite. It's thicker, which degrades the clarity!

It turns out that the problem relates to font weight. Unless explicitly stating the
font-weight property, many browsers will apply a standard font-weight
(typically, 700) to any heading elements. The solution therefore is to always define
the font-weight of any @font - face fonts used in heading elements. For example, in
this instance, I amended the CSS to:

.productIntro hl {
font-family: CaudexBold, "Times New Roman", Times, serif;
font-weight: 400;
font-size: 2.63636364em;
line-height: lem;

}

[167]

CS53: Selectors, Typography, and Color Modes

This then overrides the font -weight value that the browser would ordinarily use
and as shown in the following screenshot, the design finally matches the composite
in the browser:

We're Bridestone:

providing beautiful quality nafural

stone products.

d Stone Products ‘B Bespoke
? Restoration 9 Find Us

A note about custom @font-face typography
and responsive designs

The @efont - face method of web typography is, on the whole, great. The only caveats
to be aware of when using the technique with responsive designs are in relation to
the font file size. For example, the And the winner isn't... site is using three custom
fonts —Bebas Neue, Bitstream Vera Sans, and Collaborate Thin. At worst, if the
device rendering the page required the SVG font format, it will require an extra 70
KB of data, compared with using the standard web safe fonts such as Arial. These
fonts are also fairly lightweight — others are not! Be sure to check the size of custom
fonts if you want the best site performance.

A truly responsive type unit on the way?

Amongst the current working draft of the CSS3 Fonts module is

M reference to viewport relative fonts (http://www.w3 .org/TR/
css3-values/#viewport-relative-lengths). The vw unit (for
viewport width), vh unit (for viewport height) and vm unit (for viewport
minimum; equal to the smaller of either vi or vh) could be crucial time
savers in the years to come. Sadly, at present there is no browser support
apart from Internet Explorer 9.

[138]

http://www.w3.org/TR/css3-values/#viewport-relative-lengths
http://www.w3.org/TR/css3-values/#viewport-relative-lengths

Chapter 5

New CSS3 color formats and alpha
transparency

So far, CSS3 has given us new powers of selection and the ability to add custom
typography to our designs. Now, we'll look at ways that CSS3 allows us to work
with color that were simply not possible before.

Firstly, CSS3 allows us to use new methods, such as RGB and HSL, for declaring
color . In addition, it enables us to use those two methods alongside an alpha channel
(RGBA and HSLA respectively).

RGB color

RGB (Red, Green, and Blue) is a coloring system that's been around for decades.

It works by defining different values for the red, green, and blue components of a
color. For example, the red color used for the odd numbered navigation links on
the And the winner isn't... site is currently defined in the CSS as a hex (hexadecimal)
value, #£e0208:

nav ul li:nth-child(odd) a {
color: #fe0208;

!
However, with CSS3, it can equally be described as an RGB value:

nav ul li:nth-child(odd) a {
color: rgb (254, 2, 8);

}

[169]

CS53: Selectors, Typography, and Color Modes

Most image editing applications show colors as both hex and RGB values in their
color picker. The following screenshot shows the Photoshop color picker, with the R,
G, and B boxes showing the values for each channel:

new

(B i —T | —
. Cancel |
current |M|
@Hf igss |° { :_uLI |54
._;_.5: [o9 |% -_;_ua.' |80
()B: |99 |% (b: |68
(OR: [254 oI
G |2 M:[95 %
OB |8 |

vi[92 |%
#|fe0208 Ko |%

EHE EP

|| Only Web Colors

You can see that the R value is 254, the G value is 2 and the B value is 8. Which is
easily transferable to the CSS color property value. In the CSS, after defining the
color mode (for example, rgb) the values for red, green and blue colors are comma
separated in that order within parenthesis.

HSL color

Besides RGB, CSS3 also allows us to declare color values as HSL (Hue, Saturation,
and Lightness).

. HSL isn't the same as HSB!
\

~ Don't make the mistake of thinking that the HSB (Hue, Saturation, and
Brightness) value shown in the color picker of image editing applications
such as Photoshop is the same as HSL —it isn't!

[138]

Chapter 5

What makes HSL such a joy to use is that it's relatively simple to understand the
color that will be represented based on the values given. For example, unless you're
some sort of color picking Ninja, I'd wager you couldn't instantly tell me what
color rgb (255, 51, 204) is? Any takers? No, me neither. However, show me the
HSL value of hs1 (315, 100%, 60%) and I could take a guess that it is somewhere
between Magenta and Red color (it's actually a festive pink color — perhaps I'm
starting to like Moulin Rouge after all). How do I know this? Simple...

HSL works on a 360° color wheel. The first figure in a HSL color, represents Hue,
and has Yellow at 60°, Green at 120°, Cyan at 180°, Blue at 240°, Magenta at 300° and
finally Red at 360°. So as the aforementioned HSL color had a hue of 315, it's easy

to know that it will be between Magenta (at 300°) and Red (at 360°). The following
two values for saturation and lightness, specified as percentages, merely alter the
base hue. For a more saturated or colorful appearance, use a higher percentage in the
second value. The final value, controlling the lightness, can vary between 0 percent
for black and 100 percent for white.

So, once you've defined a color as an HSL value, it's also easy to create variations on
it, merely by altering the saturation and lightness percentages. For example, our red
navigation links can be defined in HSL values as follows:

nav ul li:nth-child(odd) a {
color: hsl (359, 99%, 50%);

}

If we wanted to make a slightly darker color on hover, we could use the same HSL
value and merely alter the lightness (the final value) percentage value only, as shown
in the following code snippet:

nav ul li:nth-child(odd) a:hover {
color: hsl (359, 99%, 40%);

}

In conclusion, if you can remember the mnemonic Young Guys Can Be Messy
Rascals (or any other mnemonic you care to memorize) for the HSL color wheel,
you'll be able to approximately write HSL color values without resorting to a color
picker and also create variations upon it. Show that trick to the savant backend PHP
and .NET guys at the office party and earn some quick kudos!

[171]

CS53: Selectors, Typography, and Color Modes

Fallback color values for IEG6, IE7, and IE8

As you might have guessed, RGB and HSL are not supported in Internet Explorer
versions below IE9. Therefore, if a fallback color declaration is needed for these
browsers, specify it first before the RGB or HSL value. For example, the navigation
link rule defined above could have a hex fallback specified like this:

nav ul li:nth-child(odd) a {
color: #fe0208;
color: hsl (359, 99%, 50%);

}

Alpha channels

So far you'd be forgiven for wondering why on earth we'd bother using HSL or RGB
instead of our trusty hex values we've been using for years. Where HSL and RGB
differ from hex is that they allow the use of an alpha transparency channel. This
means one element with an alpha transparency will show what's beneath it.

Let's make some amendments to the And the winner isn't... home page to illustrate.
First, we'll set a grungy background image in the body element, as follows:

body {
background: url(../img/grunge.jpg) repeat;

}

Now, we'll add a white background in the #wrapper div (which encloses all the other
elements). However, instead of setting a solid white color with a hex value, we'll set
a HSLA value as shown in the highlighted line in the following code snippet:

#wrapper {
margin-right: auto;
margin-left: auto;
width: 96%; /* Holding outermost DIV */
max-width: 1414px;
background-color: hsla(0, 0%, 100%, 0.8);

}

An HSLA color declaration is similar in syntax to a standard HSL rule. However,
in addition, you must declare the value as hsla (rather than merely hs1) and

add an additional opacity value, given as a decimal value between 0 (completely
transparent) and 1 (completely opaque). Here, we have specified that our white
#wrapper isn't completely opaque. The following screenshot shows how it looks in
the browser:

[138]

Chapter 5

And the winnerisn't...

“i“"__COIDEWEISSl:e v C'\--:!_'G:-og_.le Q 'i"}n'\‘u-"!-’!

¢ WHY? SYNOPSIS STILLS/PHOTOS VIDEOS/CLIPS QUOTES auiz ‘

EVERY YEAR

WHEN | WATCH THE a
OSCARS I'M ANNOYED... %
that films like King Kong, Moulin Rouge and ff.
Munich get the statue whilst the real :**
cinematic heroes lose out. Not very :

OVERHYPED NONSENSE...

Hollywood is it?
We're here to put things right.
THESE SHOULD HAVE WON »

MOULIN ROUGE

B 1051x878

The RGBA syntax follows the same convention as the HSLA equivalent, using an
additional opacity value after the color:

background-color: rgba (255, 255, 255, 0.8);

Hopefully you can see that the addition of an alpha channel to both the RGB and
HSL color modes, allows us a great deal of flexibility when layering elements. It
means that we no longer have to rely on the transparency of images (PNG and GIF
images, for example) to achieve this type of visual effect, which is great news when
building a responsive design.

[173]

CS53: Selectors, Typography, and Color Modes

Why not just use opacity?
CSS3 also allows elements to have opacity set with the opacity
declaration. A value is set between zero and one in decimal increments

~ (for example, opacity set to 0.1 is 10 percent). However, this differs from

Q RGBA and HSLA in that setting an opacity value on an element affects the

entire element. Whereas, setting a value with HSLA or RGBA meanwhile
allows particular parts of an element to have an alpha layer. For example,
an element could have an HSLA value for the background but a solid
color for the text within it.

The CSS3 Color module was the first of the CSS3 modules to reach the advanced
Recommendation stage. Therefore, like the CSS3 Selectors module, CSS3 Colors are
good to use right away, safe in the knowledge that the method of implementation is
unlikely to change from this point onwards.

Summary

In this chapter, we've learned how to easily select almost anything we need on the
page with CSS3's new selectors. We've also looked at how we can make responsive
columns for content in record time and solve common and annoying problems such
as long URL wrapping. We now also have an understanding of CSS3's new color
module and how we can apply colors with RGB and HSL complete with transparent
alpha layers for great aesthetic effects. In this chapter, we've also learned how to add
custom fonts to a design with the @font-face rule, finally freeing us from the shackles
of the humdrum selection of "web-safe" fonts we're used to designing with. Despite
all these great new features and techniques, we've only picked at the surface of what
we can do with CSS3. Let's move on now and look at even more ways CSS3 can
make a responsive design as fast, efficient, and maintainable as possible with CSS3
text shadows, box shadows, gradients, and multiple backgrounds.

[138]

